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Large-scale structures with an inviscid, non-linear subdomain (deck) on the bottom of a boundary layer in the case of subsonic 
and transonic free stream velocities are considered. A class of locally inviscid perturbations with an internal line of discontinuity 
of the tangential velocity, which leads to the appearance of a free term on the right-hand side of the Benjamin-Ono equations, 
is investigated. The shape of the above-mentioned line is sought and it is determined from the solution of a system of one- 
dimensional non-stationary equations in which, apart from the Benjamin-Ono equation, a kinematic condition and an equation 
for the inviscid deck close to the wall also occur. An example of a periodic, non-linear solution is constructed and amplitude 
constraints which ensure its realization are formulated. © 2000 Elsevier Science Ltd. All rights reserved. 

1. E S T I M A T E S  O F  T H E  S C A L E S  O F  T H E  P E R T U R B A T I O N S .  
A S Y M P T O T I C  E X P A N S I O N S  I N  T H E  M A I N  P A R T  O F  T H E  

B O U N D A R Y  L A Y E R  A N D  I N  T H E  P O T E N T I A L  F L O W  D O M A I N  

Suppose the profiles of the longitudinal component of the velocity u* and the gas density p* are specified 
by the functions Uo(Ym)U* and Ro(Ym)P*~ in a boundary layer at a distance L* from the leading edge of 

- 4  , , I l l , q  the flat plate. In these functions, the coordinate, normal to the plate, is Y,, = ~ y L - ,  ~ = Re- and 
the Reynolds number Re = 9*U*~*At* ~ ~. Henceforth, dimensional quantities are denoted by asterisks 
and the subscript ~ refers to parameters of the unperturbed flow at infinity. The origin of the Cartesian 
system of coordinates x*, y* is placed at the leading edge and we assume that the free stream of gas with 
velocity U*, Math number M~ and viscosity coefficient p*~ is directed along the x* axis. 

If the longitudinal component of the velocity UoU*~ is perturbed by an amount of the order of aU~,* 
c~ <~ 1 in the domain of the boundary layer of the length x* - L* = eL*, e<~ 1, then, according to the 
continuity equation, the perturbation of the vertical component of the velocity v* is of the order of 
ct~4UlU *. This estimate holds when the inner variable of the boundary layer Ym = O(1). The excess 
pressure p* - p * ,  which is induced by the increase in the displacement thickness, in the potential flow 
outside the boundary layer (Y,, >> 1) is estimated as ff,~:4~-lp*U*2. On the other hand, in the non-linear 
part of the boundary layer close to the wall Y,, ~ 1 or, more precisely, Ym = O(~eQ, U0 = O(a), the 

2 , ,2 order of the excess pressure a 9~U* is determined by the quadratic terms in the equations of motion 
, 1 , , 1 4 1 and the time t has a characteristic value ec~- L U*- .  The relation e = e c~- is obtained from this. 

Note that, at short distances of the order of eL*, the dependence of the functions U0 and R0 on the 
coordinate x* is unimportant and will not subsequently be taken into consideration. 

Hence, for the class of perturbed motions in the main deck of the boundary layer (deck 2) which are 
being considered, the expansions of the gas parameters in asymptotic sequences has the form 

U = U 0 + ff121m + O~2U2ra "1" u -- O~2u In, "t- 13~3U 2m + " "  
v :  .... V*. 

L = RO + ¢Xpl m + O~2p2rn + .  
P.  

P p<. 
= ~ 2 p l  m + ¢g3p2 m + .  , . . , 2  " " 

P**U,,. 

(1.1) 

and the arguments T, X, Ym of the required functions Ujm -- Ujm(Z , X ,  Ym), Ujm(T~ X,  Ym), Pjm = 
Pjm(T, X, Ym),Pjm = Pj,~ (T, X, Ym) (J = 1, 2 . . . .  ) are defined by the expressions 

u . t  J 
tPrikl. Mat. Mekh. Vol. 63, No. 6, pp. 955-971, 1999. 

/ ) x * = L *  I + - - ~ - X ,  y*=L*F.4Ym (1 .2 )  
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We substitute expressions (1.1) and (1.2) into the system of Navier-Stokes equations. Some of the 
first terms of the above-mentioned expansion will then satisfy equations which are identical in accuracy 
with those derived for the main deck of the triple-deck theory of free interaction [1-5]. When account 
is taken of the second-approximation terms which have been written out above, we obtain 

Uim = AI(T,X) dU° m Vim = ~ x  UO(Ym) 

Plm = AI(T,X) dR° , 
arm Plm = Plm(T, X) 

X 
2 f OIl2m AV" 

.2. = - M . U o , , .  - L TC" (1.3) 

~A~ a~ OA~ duo YmUo(M~ Or')., 
U2m = OT OX m dY,. - l )  0X - 

,, op~, 7[  1 llar~ OA2 UoO.,~) 
-,,o [ 

p,. ,.o, o .' : ORo(OA, .... 
= ~I-- j ~ / ~ + l : 2 m / a A  

z arm t, d y  m j - * *  Oy m t,. OT J 

where the functions A j = A I(T, X), A2 = A2(T, X) are arbitrary. 
The asymptotic form of the solution of (1.1) in the upper edge of the boundary layer follows from 

(1.3) and, taking into account the limit properties U0 --> 1, R0 ---> 1, we find, when Y,. --> oo 

It* i1 * OA I 
"--) l-Ot2p~m + .... ~ -) I -(X 2 +... 

u: u*.. ox  

P •  -.-~ 1 + {X2plra + . . . .  
P.. 

p -- p** _.> (X2plra + . .  , . . ,2  
p~u~ 

(1.4) 

As far as the external potential flow is concerned, in the deck I which is adjacent to the boundary layer 
from above, the following expansions hold 

V* 
u'. =a2°~" +@v2. +... U = l +O~2glu + (~3g2u + . . . ,  

v ;  

P -P**  = ¢X2Pl, + (X3p2u + " "  (1.5) G =  1 +lX2pl. +0t3p2u + .... • ,2 
P- p.U. 

The arguments T and X of the required functions uj. = uj.(T, X, II.), t~j. = oj.(T, X, Y.), pj. = pj.(T, 
X, Y.), pj. = pj.(T, X, Y.) ( /=  1, 2 . . . .  ) are specified by relations (1,2), and the variable Y. is introduced 
by the equality 

y* = L*E4OCIyu (1.6) 

The form of expansions (1.5) is dictated by the asymptotic formulae (1.4) and, moreover, I1, = aYm. 
The representation of the solution of the Navier-Stokes equations by means of (1.5) and (1.6) gives 

Oul. +Op,. +Out. ui-~-" + 0pI" =0 
ox ox ox 

0ul. +0pj. =0, 0Plu 1 Opt., (1.7) 
ax = M.  ax 
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Hence 

)a~x . aoj. apl,= av~,, 0-M-  = a t .  ' a x  

and the function p l,( T, X,(1 -M~)-~/2ys)+i(1 - M~)= -~/=u~,(T, X,(1 - M 2~j~-l/2Y, ~s, is an analytic function 
of the complex variable X + iy~. The Schwartz integral for the half-plane, as it applies to the above- 
mentioned analytic function, has the form 

p,u(T,X,o)= l--(1-U~) -~  ~ u'u(T'~'O) ar~ (1.8) 
rc __0. ~ - X  

Here, the integral is understood in the sense of the principal Cauchy value. 
If Yu ---> 0, then Y,, ---> oo and, by virtue of (1.4), matching of the asymptotic expansions (1.1) and (1.5) 

lead to the conditions 

pl,(T,X,O)= Plm(T,X), Ulu(T,X,O)=- aAt aX 
(1.9) 

The function to be determined A1 = A ](T, X), together with the pressure Plm (T, X), characterizes 
the magnitude of the instantaneous displacement of the streamlines in the boundary layer with respect 
to their unperturbed position when X --> - oo. The perturbation of the pressure in the outer, potential 
flow domain 1 is induced by an increase in the displacement thickness, which is described by the function 
A1 and is transmitted, according to the first of formulae (1.9), into the main deck of the boundary layer 
and, in turn, affects its displacing action. This mechanism finds reflection in the interaction boundary 
condition [1-5], which formally follows from (1.8) and (1.9) 

p,.  a A , ( r , ¢ ) / a ¢  (1.10) 

2. ASYMPTOTIC EXPANSIONS IN THE NON-LINEAR REGION ON THE 
BOTTOM OF THE BOUNDARY LAYER 

When Ym = O(ct), the velocity perturbation becomes of the order of the velocity itself. Actually, in 
the unperturbed boundary layer 

Uo=klYm + .... Ro=ro+ .... gm ' ')0 (2.1) 

The expression for t~z,n from (1.3) contains an integral which diverges at the point Ym = O. The 
behaviour of this integral in the neighbourhood of the given point is determined not only by ~,1, r0 but 
also depends on the higher terms of the expansion of the functions U0, R0 using Taylor's formula. We 
will therefore refine formulae (2.1), assuming that the surface is thermally isolated and, consequently, 
the equalities d2Uo(O)/dY~ = O, clRo(O)/dYm = 0 hold. Then, by virtue of (1.3), expansion (1.1) in the 
limit as Ym '> 0 can be written as follows: 

U* = klY,, +0~1AI +O(c(2) 
v" 

I/ =_0{2~,1 aA I Y _o~3[aAi +~IAI aA I , 1 apl m +O(0~4 ) (2.2) 

p- 
p,  = r0 + O(a2) 

Comparison of the first two terms in the expression for u* from (2.2) leads to the estimate given above 
for the magnitude" of the transverSec coordinate Ym,4 .which establishes the lower boundary of deck 2. We 
now introduce deck 3 with a thi kness of cte L , where non-linear effects predominate, which is 
contiguous to deck 2 from below. The gas parameters in this domain can be represented in the form 
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- U*  
U __ ~ l a  + Ot2U,2a + . . . .  ~.OL31)la.l.O~402a+.., (2.3) 
u ' .  u L 

p* 

- 7  = Pla + O t P 2 a  + . . . .  
P** 

P * _ ~  = ~2pl a + ~3p2,, +... 
p**u. 

and the unknown functions uj~ = uj,,(T, X, Y,,), t~j,, = uj~(T, X, Y~), pj,,(T, X, Y,,), pj,, = pjo(T, X,  Y,,) 
(j = 1, 2 , . . . )  contain the variable Ya = O (1) as one of the arguments. The expression defining the 
variable Y,, 

gives the obvious relation Ym = aY,," 
The system of equations 

y* = L*ote4Yo (2.4) 

aPla + aplaul,, + aplau la =0, aPl,, = 0  
aT aX BY,, a}',, 

~,~-T ar aUla aUla -- - aPl¢ ..t- ~ 4 a (~.,,,,,,_..~e_aUl "~ 
aye ax a oL ) Plo 

a T +  u,,, +o,,, aYo = - 7  p'" ~YTL a n  

(2.5) 

follows from representation (2.3). 
Here,/.t = la*bt *-1 is the first coefficient of viscosity and Pr is the Prandtl number. 
The limiting conditions when Y,, --+ m, which the solutions of system of equations (2.5) must satisfy, 

follow from asymptotic expressions, one changes from the variable Ym to the variable Y,,. In particular, 
the property 

= p~,, + O(~x 2) 
P® 

holds when X ~ --m and Y,, -+ ~ (under the assumptions made in deriving (2.2)) and this enables us 
to assume [2, 6] that 

PI~ = r0, P~ = 0 

everywhere in the non-linear deck 3. 
The triple-deck model of free interaction [1-5], constructed to describe different types of motions 

of a liquid and gas under conditions when problems regarding the viscous flow domain and an outer 
inviscid flow do not split and must be solved simultaneously, is based on asymptotic expansion with 
respect to a small parameter e = Re -1/8. The elements of the approach considered here which a renew 
compared with the theory proposed earlier are the introduction of a parameter ct, which is independent 
of the Reynolds number and can be of a smaller order than the parameter e, and a different normalization 
of the variables t*, x*, y*. If one puts ot = ~ in expansions (1.1), (1.5) and (2.3) for decks 1, 2 and 3 
then, as can be seen from Eqs (2.5), the viscous tangential stresses in domain 3 become so important 
that they are also the mechanism of the non-linearity. In this case, we return to the triple-deck theory 
[1-5] which enables us to reduce the problem of an interacting boundary layer to the solution of system 
of equations (2.5) with the boundary conditions 

]Ca=O: U|a -----U la = 0; Ya...,+o~,: Ula.-.q~,l(Ya-FAi) 

and the additional condition (1.10) withp~m = Pla and Ym = ¥~. 
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We will 
equalities 

3. S P L I T T I N G  OF T H E  N O N - L I N E A R  D O M A I N  ON T H E  B O T T O M  I N T O  
T W O  S U B L A Y E R S  IN T H E  CASE OF C O M P A R A T I V E L Y  L A R G E  

A M P L I T U D E  P E R T U R B A T I O N S  

now consider the asymptotic structure of a perturbed f low, assuming that the in- 

,~ a ,~ 1 (3.1) 

are satisfied. 
In this case, as can be seen from Eqs (2.5), the non-linear part is split into a main inviscid sublayer 

Yo = O(1) and a viscous sublayer, adjacent to the wall, of thickness Y, = O (a-2c2), and expression (2.4) 
still holds for the variable Yo. As previously, we mean by deck 3 of the quadruple-deck scheme of the 
perturbed velocity field which arises, the sublayer Y, = O(1) in which expansions (2.3) hold and in which 
terms in Eqs (2.5) containing the viscosity coefficient la can be neglected. The lower boundary Y, ~ 0 
of deck 3 serves as the outer edge of deck 4 which comes into contact with the plate surface and for 
which the characteristic vertical coordinate Ye = O(1), y* = L*ot-te6ye is introduced. The expansions 
of the stream functions in deck 4 

u =otu,t(T,X, yt) + .... v =ot~lvle(T,X, yt)+. . .  
v." u" 

p-~- = ro + . . . .  = a 2 p t , ( T .  X, r~) + . . .  

leads to a system of Prandtl equations with the boundary conditions 

(3.2) 

ge = 0  : ult =vie = 0  (3.3) 

Ye "~ ** : ute ~ uta(T, X,O) (3.4) 

Boundary-value problems for the principal terms of the expansions of the gas parameters in decks 
2 1/2 1 3 and 4 will not contain the constants ~q, r 0, s = (M~ - 1) nor the viscosity coefficient ~ = g(r0- ) 

calculated at the temperature Ro-J(Ym) of the unperturbed boundary layer when Ym -- 0, if the following 
similitude transformation is carried out [1-5] 

t = btT, x = bX X, y z ya =byYa, 

U 
u - b  Ula, II =buvla, ut. mbUUlt, 

where 

Yt = by = It, a = bYal 

v t = iflVl¢, P = bPPlm 

(3.5) 

by f~ ,~r#lXo~S~" bp = ~-tJ~F, oJ6Sk 6 (3.6) 

b" = V = 

In the variables (3.5) and (3.6), the system of equations (2.5) for the non-linear inviscid deck 3, subject 
to assumption (3.1), can be rewritten as follows: 

~u ~u /)u ap au av ap (3.7) 

On replacing the variable Ym in (2.2) by the variable Y~ = a-lYre, we obtain the limit form of the 
expansions (2.3) when Y~ --) oo. In particular, the leading terms (with respect to the parameter ~) of 
expressions (2.2) specify the asymptotic form of the functions Ula, Ula, Pi,, Pl~ on the upper edge of 
deck 3. As can be seen from (2.2), the above-mentioned functions, rewritten in the special system of 
units (3.5), (3.6), possess the following behaviour asy --* ov 
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OA OA _ A OA Op (3.8) 
u = y + A, u = - ~ x  y - - -  ~ ~x ~x 

Expressions (3.8), which establish the asymptotic boundary conditions for system of equations (3.7) 
satisfy this system identically. Hence, functions (3.8) can be continued into the domain of finite values 
ofy  as solutions of system (3.7) and the conditions for the matching of the asymptotic expansions in 
decks 2 and 3 in the limit as y ~ oo will be satisfied. 

We now return to the matching of the asymptotic expansions in decks 3 and 4 (assuming that there 
are no irregularities with a vertical dimension of the order of ~;4 on the surface of the plate around 
which the flow occurs). The relation Y~ = ct2e-2Y,~ follows from the definition of the transverse coordinate 
Ye for the lowest deck 4 which is adjacent to the plate and, by virtue of (3.1), the variable Ye -+ oo when 
Ya ~ 0. The internal limit of expansions (2.2) as I1o ~ 0 must be identical with the external limit of 
expansions (3.2) and Ye ~ oo. This means, in particular, that the function t)la (and, changing to the 
variables (3.5) and (3.6), also the function t~) must be of the order of et-2e 2 when y = O(et-%~). If the 
function t~ is taken from solution (3.8) of system of equations (3.7), then the above-mentioned limit 
property can only be satisfied when the condition 

~A + A ~x =I ~_~ O2A(t'~)I ~2 
"~- ~ - x  d~ (3.9) 

is satisfied, since the functions p and A are independent of the variable y and relation (1.10) between 
them, in the system of units (3.5), (3.6), acquires the form 

1 ** 3 A ( t , { ) 1 3 {  
P = - - -  I d~ (3.10) 

Ig ...** ~ - - X  

One of the conditions for the matching of the leading terms of expansions (2.3) and (3.2), which is 
expressed by Eq. (3.9) (known as the Benjamin-Ono equation [7, 8]) is equivalent to impermeability 
condition t) = 0 wheny = 0 by virtue of (3.8). In the triple-deck theory [1-5], if the displacement thickness 
A and the self-induced pressure p can only be determined when solving the boundary-value problem 
in the viscous sublayer adjacent to the wall, the quadruple-deck scheme reduces the construction of 
the two-dimensional flow pattern in decks 1-3 to the solution of one-dimensional equation (3.9). The 
flow fields in these decks are established using the function A by means of formulae (1.3), (3.8) and 
(3.10). As far as the viscous deck 4 close to the wall is concerned, the function ulo(T,X, 0), which occurs 
in asymptotic condition (3.4), after the change of variables (3.5) and (3.6), is identical with A = A (t, x) 
as can be seen from (3.8). In this sense, deck 4, which is close to the wall, plays a passive role since the 
flow parameters in it are determined using the pressure and velocity distributions on its outer edge, 
which are found independently. 

The possibility, which has been pointed out earlier [9], of describing the mechanism of the interaction 
on the basis of the Benjamin-Ono equation (or Burger's equation in the case of a supersonic flow velocity 
in the deck 1) and the realization of a quadruple-deck structure is a consecluence of inequality (3.1); 
passing to the limit of high frequency pulsations within the framework of a triple-deck scheme [1-5], 
which is accompanied by stratification of the lower deck close to the wall, also leads to the above- 
mentioned equations [10, 11]. The modification of the theory under consideration in order to apply it 
to the problem of the flow past a small irregularity on a plate with a vertical dimension of the order of 
(/.~4 reduces to the appearance of a free term on the right-hand side of Eq. (3.9). It has previously been 
shown [11, 12] that the free term serves as a source of self-excited oscillations in the form of soliton 
solutions even in the case of steady-state boundary conditions. " 

The steady-state analogue of system of equations (3.7) describes one o f  the subdomains in the 
asymptotic problem of the reattachment of a supersonic flow [13] and, also,'the neighbourhood of the 
separation point of the boundary layer on a wall which is moving downstream [14]. Supersonic flow 
past a plate with periodically oscillating screen and the propagation of the perturbations, caused by a 
sudden change in the bottom pressure, along the surface of a wedge have been treated in [15] as examples 
of unsteady locally inviscid flows with interaction. 

4. THE STRUCTURE OF DECK 3 WHEN THERE IS A TANGENTIAL 
DISCONTINUITY IN THE VELOCITY 

We will now consider a moving contour defined by the equation 
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y" = o~4L*GI (W, X) (4.1) 

T and X are defined by formula (1.2) and the components of its outward normal are 

x 1 ay" = a2 aG m 
= -  . n y  = " ~ =  nx 1 + x 2 ' 1 + ~2 " ax" ax 

The velocity of the contour along the normal to it, a 5, can be replaced, apart from quantities of 
the order of u*,, by a derivative of function (4.1) with respect to the time t* (which is of the order of 
53). 

We set up an impermeability condition on the contour (4.1), assuming the contour is a streamline. 
Since it is a distance from the solid wall which is equal in order of magnitude to the thickness of the 
inviscid non-linear deck 3 in which the coordinate Y, = O(1) is specified by means of (2.4), then, subject 
to the impermeability condition U*nx + u*.ny = u*,, functions of the first approximation of the asymptotic 
series (2.3), confining ourselves to the leading terms of the expansions of the components of the normal 
nx, ny with respect to the parameter a, have to be taken as the gas velocities u*, u*. Hence, the kinematic 
condition on the line (4.1) in the special system of units (3.5), (3.6) for deck 3 takes the form 

aG aG (4.2) 
y = G : at =v + U.~x 

where G(t, x) = bYGI(T, X) and the coefficient b y is defined in (3.6). 
We shall assume that solution (3.8) obtained by analytic continuation from deck 2 holds in the 

subdomain G(t, x) < y < + oo of deck 3 up to its lower boundaryy = G(t, x). Substitution of expressions 
(3.8) into (4.2) then leads to the relation 

a(A + G) ÷ (A + G) a(A + G) + ap = 0 (4.3) 
at 

We will denote by ~ an operator, the action of which on the functionf(t, x) is expressed in terms of 
a Cauchy-type integral 

~e{f} = ~-x 
By virtue of (3.10), condition (4.3) has, as a consequence, the Benjamin-Ono equation 

{ a2'~ } 
aA +,~ a,4 = ~  - ~ t , x )  (4.4) 
3--7 

in the functionA = A + G and the free term on the right-hand side of (4.4) is determined by the function 
G = G(t, x) as follows: 

_ fa ol 
~ ' , x ) = ~ l ~ x 2  ~ (4.5) 

Suppose the surface of the body around which the flow occurs (which is a flat plate) has an irregularity 
with a vertical dimension of the order of 0te4L *. Then, in the variables in which equations (3.7) are 
written, the shape of the solid surface can be defined by the equationy = F(x). Equations (3.7) imply 
that the vorticity 

~u 
0 . } =  D av 

is conserved along the streamline 

ato at~ a(o 
W + ,, + . -ff = o 
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We will now consider the solution of the system of equations (3.7) with a constant vorticity co = too 
in the subdomain F(t, x) < y < G(t, x) of deck 3 

u = f~0Y + O(t, x) (4.6) 

The impermeability condition on the solid surface y = F(x) leads to the expression 

DO DFO ~oDF 2 (4.7) 
u =-y.-~x+--~-x + 2 Dx 

We substitute (4.6) and (4.7) into the kinematic condition (4.2); then 

~-Q-a + ~ [(a-F)O +-~(a2- F2)]= 0 Dt DxL (4.8) 

The pressure gradient is established using the first equation of system (3.7) 

OO DO ~x(  ~0 ) Dp (4.9) - -  + O--~-x + ~ 0 YO+ F 2 = 
Dt 2 -~xx 

On the line y = G(t, x), the velocity component which is tangential to it, generally speaking, suffers 
a discontinuity. 

5. SOME EXACT SOLUTIONS OF THE BENJAMIN-ONO EQUATION 

Suppose A (t, x) is the solution of the homogeneous Benjamin-Ono equation (3.9). It can be verified 
that, for any value of the parameter 9, the function 

Ap(t, x) = (1 - p)A[(1 - p)t, x] 

satisfies the Benjamin-Ono equation with the inhomogeneous right-hand side 

[ D2Ap l 
bA° + A" DAP = " 3x  

if the free term 

~(t,x)= [ Dx 2 j, Bp(t,x)=pAp(t,x) 

We now consider the solution, which is periodic with a spatial wavelength of 2xk -1 and a frequency 
kc, of the homogeneous Benjamin-Ono equation 

[ k21'~ ]-' 
A(t'x)=2k2c 1 - 1 - - ~ ' ]  cos[k(x-c')] 1 (5.1) 

which depends on two parameters: the wave number k and the phase velocity c. The function (5.1) is 
even with respect to k, and we shall therefore assume that k > 0. As far as the sign of c is concerned, 
expression (5.1) only specifies the solution of the Benjamin-Ono equation when c < 0 and therefore 
represents a wave which is always travelling upstream. 

IfA(t, x), is the solution of the Benjamin-Ono equation, then 

~A(~32 t, ~3x) (5.2) 

and 
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+ A(t, x - ~ t )  (5.3) 

are also the solutions at any ~3 and ~ .  
Application of transformation (5.2) to the periodic solution (5.1) of the Benjamin-Ono equation is 

equivalent to the changes in the wave number and phase velocity: k ~ ~dk, c ~ cp._.~, and, hence, does 
not increase the number of  parameters occurring in this solution. 

Transformation (5.3) (the change to a system of coordinates moving at a velocity -5~) leads to the 
three-parameter solution 

} A ( t , x ) = ~ -  1 -  1 -  c o s [ k ( x + ( I c l - ~ ) t ) ]  (5.4) 

We recall that, in (5.1), c < 0 always. In view of (5.2), (5.3) can be considered, without loss of generality, 
as the steady-state solution with a period of 2n, on putting ~ = J c I, k = 1 and confining ourselves to 
a single parameter which is taken as 

0 < 1 ~ 0 =  1 icl2 ) <1 

Hence the function 

a(t,x)=mo(x)= [l- ) ] 
(1 - £ 2 ) ~  1 - I~ 0 C O S X  

(5.5) 
is the solution of the homogeneous Benjamin-Ono equation. The extremum values of  the function (5.5) 
at the points x = 0 and x = n are 

1 + 2 e  0 1 - 2 e  0 ( 5 . 6 )  
Aml n = -  Aim x = -  

(I - CO) ~ ' (I - CO) ~ 

Substituting the parameter 8o, which is equal to the amplitude of the non-linear oscillations 

__ ti0 
80=Amax-Amin' e0 (802+16) ~ 

into (5.5) instead of e0, we obtain a further representation of the 2•-periodic steady-state solution of 
the Benjamin-Ono equation 

a0(x) = (8°2 + 16)  8 (5.7) 
4 (82 + 16) ~ - 80 cos x 

As 8o ~ 0, (5.7) defines a neutral Tol!mien-Schlichting wave in a system of coordinates which moves 
downstream at a velocity I c I ~ 1 + 0 

/to(X) = -I - ~0 COSX + 0(~0 2) 
2 

When 80 --4 oo, the limit form of (5.6) 

shows that solution (5.7) is sign variable and the deviation of the functionA0(x) downwards from a zero 
value is three times greater than the deviation upwards. 

We will rewrite solution (5.7) under the assumption that the amplitude of the oscillations tends to 
infinity 80 ~ oo 
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r,_oo x+S+o -/1 ' 
a°~x)=7 ~+t~0) ~0L ~0 ts0)J 

(5.8) 

In the case of I - cos x = O(1), the asymptotic form of solution (5.7) for 8o ~ oo is defined by the 
expression 

A0(x) = -~- + O(8-~) (5.9) 

Hence, in the limit of large amplitudes which is being studied, solution (5.7) tends from below to a 
constant value equal to its maximum value. However, as can be seen from ~5.8), the asymptotic 
representation (5.9) ceases to be valid in the narrow domains 1 - cos x = 0(80- ). As a consequence 
of the periodicity of the solution, we will confine ourselves to considering it in the neighbourhood of 
zero. On expanding the function cosx in (5.8) in a MacLaurin series up to O(x 4) asx ~ 0, we find 

C ,, + roe{')]-' (5.1o) 

The asymptotic form (5.10) of solution (5.7) is a solitary standing wave on a non-zero background 
8o/4 (a soliton on a pedestal). Formula (5.10) holds in the domainsx __. 2nn = O(5o 1) (n = 0, 1, 2 . . . .  ), 
and therefore specifies the solution in the form of narrow tongues. 

6. S P E C T R A L  D E C O M P O S I T I O N  OF T H E  N O N - L I N E A R  P E R I O D I C  
S O L U T I O N  OF T H E  B E N J A M I N - O N O  E Q U A T I O N .  

E X P A N S I O N  IN A S Y S T E M  OF E Q U I D I S T A N T  S O L I T O N S  

We shall now indicate other forms of representation of periodic solution (5.1). Suppose that 

k f k2 ~-~ (1 k2]-j~ 
. - 7 )  

(6.1) 

Then 

2ksh~  =_2im{ik l+exp[-~-ik(x+lclt)]~= 
A(t, x) = ch ~ - cos[k(x+ I c I t)] 1 - exp[-~. - ik(x+ I c I t)] J 

= - 2 k  1+2 ~ ( ~ 1  cos[kN(x+lclt)] 
N=lt, l c l + ~ )  

(6.2) 

(when obtaining the last equality in the chain, the quantity exp ( -~)  was eliminated using (6.1) and the 
imaginary part was separated out). 

It can be seen from the spectral composition (6.2) of the coherent soliton structure that the amplitudes 
of the spectral modes of the periodic solution (5.1) form a geometric progression in Fourier space. At 
the same time, in physical space, solution (5.1) decomposes into strongly non-linear localized structures 
for any relations between the parameters I c I and k and.not only in the case of formula (5.10) being 
described, for the limit [ c I/k --~ oo (e 0 ~ 0, 80 --~ oo). This last assertion was formulated earlier [16] and 
is based on a consideration of the integral 

,[/ } i =  11_2 ~ +~2 d ~  
exp(2ni~) - 1 

(6.3) 

along a closed contour F in the complex plane ~. 
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Suppose the contour F is the circle t ~ [ = RN = N + 1/2 (N = 1, 2 . . . .  ). 
Then, on representing integral (6.3) in the form of a sum of the residues at the poles of the integrand 

and taking account of the fact that this sum tends to zero when N ~ oo, we obtain 

-{/ ]-' 
-l_4i -- cos =-n 4 n-2 +¢ 

The left-hand side of this equality when 

thk{=l- ~ ,  1 ] = x + l c l t  

(6.4) 

is the solution (5.1) of the Benjamin-Ono equation. The non-linear periodic solution (5.1) can be 
represented as a sum of solitons equidistant from one another 

(6.5) 
a(t, x) = I c I [ I - ~-~-j  cos[k(x+l c It)] = 

]•.., 41c l0  0 = k..~.arcth_l k 
=-n-- l+ lc [  2 0 2 ( x + l c l t - 2 n x l k )  2" Icl Icl 

Note that, 0 < 1 always and it is therefore only in the limit 0 ~ 1, which is attained when k/[ c [ 
0, that each term of the sum (6.5) is an exact solution [7, 8] 

A(t, x) = - 1241 c l (6.6) 
l + l c  ( x+tc i ' t )  2 

of the Benjamin-Ono equation in the form of a solitary wave (a soliton). Solution (6.6) is obtained by 
applying the transformationx ~ x  + I c It, A ~ A  - [c I to solution (5.10) and, in the last solution, one 
has to put 60 = 4] c l- 

7. AN E X A M P L E  OF A P E R I O D I C  V O R T E X  S T R U C T U R E  IN T H E  CASE 
OF A T A N G E N T I A L  D I S C O N T I N U I T Y  IN T H E  F L O W  

According to the remark made at the beginning of Section 5, the introduction of a line of tangential 
discontinuity in the velocity 

y = G(t, x) = p,4(t, x), A(t, x) = (1 - p)A[(i -p) / ,  x] (7.1) 

enables one to assert that the equation 

(7.2) 
b-7 ÷ 

will be satisfied if 

3p = _ ~ [ ~ 2 ~  ,(t,  x) = ~ I ~ 2 G ~  (7.3) 

where, in (7.1), A(t ,  x) is any solution of the Benjamin-Ono equation (3.9). 
We shall seek a solution of the system of equations (4.3), (4.8), (4.9) and (7.3) in the form of a travelling 

wave with a phase velocity c. Then 

p -- c,4 - ,~2 / 2 + ~l (7.4) 

Henceforth, we will confine ourselves to the case when F = F0 = const. From (4.9), we have 
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and if we put 

p =  c O - O  2 / 2 + f~0F00 + ff£ 2 (7.5) 

O = h, - ~oFo (7.6) 

then continuity of the pressure on the line of tangential discontinuityy = G is ensured by the following 
choice of the constants ~1, ~2 from (7.4) and (7.5) 

~{, - ~£~. = c~oFo - ~F~ / 2 

We now return to Eq. (4.8) in the function G. The assumption concerning the self-similarity of its 
solution being of the type of a travelling wave with velocity c establishes the relation 

cG - 0(7 + OF 0 - rio G2 / 2 -- ~3 (7.7) 

We assume that the constant ~K 3 = fl0F~/2 - cFo, and relation (7.7) is then satisfied in the case of the 
function 

G = p(O - c) - Fo (7.8) 

subject to the condition 

p = -2/D~ (7.9) 

We now take function (5.1) as the solution of the Benjamin-Ono equation. Then, the periodic solution 
of Eq. (4.4) 

} A(t'x)= 2k2(l-P)c c2 l cos[k(x-c(1-p)t)] (7.10) 

corresponds to the free term (4.5) which is induced by a line of tangential discontinuity of the following 
form 

f El tt y = G(t, x) -- F o - cp(l - p l - c'~ 11 c2 j cos[k(x - c(I - p)t)] 

The expression from (7.11) in the outer braces is negative in the case when 

(7.11) 

O'L ~" 
(b) 
" 0 . $  - t \  ! 

\ /  \ i  
- 5  0 5 

Fig. l, 
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(a) 

(b) 
U 

A 
-5 

-,o 

- !$ 

Fig. 2. 

• , ~ l c l / 2 < k < l c l  (7.12) 

For (7.12), the line of discontinuity does not intersect the solid wall if p(1 - p) < 0, and, hence, the 
condition 

p < 0  or p > l  (7.13) 

together with condition (7.12), ensures the realizability of the flow model with a line of tangential 
discontinuity of  the velocity located in the stream. 

A theoretical model of a recirculation zone with a characteristic length L* of the order of magnitude of the chord 
of a thin body was proposed earlier [17]. Assuming that the width of the separation zone h* does not exceed the 
body thickness, a system of equations was derived where the shape of the boundary (which is a contact discontinuity) 
of the vortex region was one of the unknown functions. It was shown that substantially non-linear unsteady 
perturbations lead to the breakdown, at a final instant of time, of this two-layer structure as a result of focussing 
and the ejection of the vortex. If ~tU*~ is the order of magnitude of the velocity in the separation zone, the structure 
considered above, as applied to the flow model in [17], occurs in the case when h*L *-r= O(ctRe-I/2). 

The streamline pattern for deck 3 when there are no velocity discontinuities is shown in Fig. l(a) if the function 
(5.7) with ~50 = 1 is taken as the solution of the Benjamin-Ono equation (which describes the non-linear motion 
in this region). Solution (5.7) itself is shown in Fig. l(b). 

Figure 2(a) illustrates the configuration of the streamlines for the flow in deck 3 with a contact discontinuity 
(represented by the dashed curve) in a moving system of coordinates, where the corresponding solution of system 
of equations (4.3), (4.8), (4.9) and (7.3) is a steady-state solution. We have put p = -2 in (7.1), and the function 
A = A - G (associated with the self-induced pressure in accordance with formula (3.10)) is shown in Fig. 2(b). 

8. T H E  C H A R A C T E R I S T I C  I N S T A B I L I T Y  OF T H E  D I S C O N T I N U O U S  
S O L U T I O N S  OF T H E  A S Y M P T O T I C  E Q U A T I O N S  IN 

T H E  S H O R T - W A V E L E N G T H  L I M I T  

The instability of a tangential discontinuity in a homogeneous medium with respect to infinitesimal 
perturbat ions [18] without allowing for the finite viscosity is such that the amplification factor of the 
perturbations increases without limit as the wave number  increases. 

We shall seek a solution of the system of equations 

c3(A + G) + (A + G) ~(A + G) = _3/9 

~t ~x ~x 

~ 0  o ~ O _  ~p 
~t  ~ x  /gx 

(8.1) 

~---~ + GO + G 2 = 0 

P=- ~-x 
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in the linear approximation. We put 

(A, G, O, p) = (Ao, G 0, O0, p0)+ (A', G', 0", p')ae it(x-c') (8.2) 

where the amplitude factor a is assumed to be small. Considering short-wavelength perturbations, we 
assume that the quantititesA0, Go, O0,~0 are constant. Substituting expressions (8.2) into system (8.1) 
and neglecting terms of the order of a t, we obtain a linear, homogeneous system of equations in A', 
G', O', p', and it follows from the fact that the determinant of this system is equal to zero that 

k = 2 s ign ~ [ ( O  0 - c)  2 + G O (Z~,o - c)] -I (Oo - c)  x 

x {ifloG o - (O o - c ) (~  - c) + [(/~oGo + (Oo - c ) (~  - c)) 2 + 

+ 4if loGo(,~ _c)2])~} ' ~ = "4o +Go (8.3) 

Expression (8.3) is obtained taking account of the equality 

l £ ~--~d~ffiisignke~ (8.4) 

which enables us to rewrite the last equation of system (8.1) in the form 

p' = I k1,4' (8.5) 

In (8.1)-(8.5), the wave number of the perturbations k is assumed to be real. As Ik I -~ oo, we find from 
(8.3) that 

c = k - iQoG o I k (8.6) 

It is clear from (8:6) that inviscid instability (with respect to infinitesimal perturbations) of flows of the 
class under consideration with a line of tangential discontinuity is such that the imaginary part of the phase 
velocity tends to zero as k increases. In this sense, the behaviour of the perturbations being studied here 
is qualitatively different from the instability pattern of a contact discontinuity in an ideal fluid which is 
described by the complete Euler equations [18], where an increase in k is accompanied by an unlimited 
increase in the amplification factor of the perturbations. This substantial retardation in the growth of the 
perturbations is explained by the fact that, in system of equations (8.1), an interaction mechanism between 
the change in the shape of the line of discontinuity and the outer potential flow through the main deck 
of the boundary layer is established. In other words, even in the short-wavelength limit, model (8.1) remains 
non-local (in a direction along the normal to the surface around which the flow occurs). 

Of course, a formal treatment (based on Euler's equations) of a small neighbourhood, containing a 
small part of the line of discontinuity and in which the flow may be considered as being homogeneous, 
leads to the identical conclusion [18] that a tangential discontinuity is always unstable. However, this 
treatment is meaningless as applied to the flow under investigation since, in the high wave number limit, 
the viscous structure of the contact discontinuity, which is, in fact, a mixing layer with a thickness of 
the order of Ay = Re-1/4a -2 <{ 1, becomes important. 

9. A Q U A D R U P L E - D E C K  ASYMPTOTIC SCHEME FOR FLOW AT 
TRANSONIC VELOCITIES OF THE OUTER STREAM 

We will now extend the flow model, which has been introduced above, to the case of a transonic free 
Moo - 1 = O(6K~), where ~ ---} 0, K® = O(1). If, now, instead of (1.1) and (1.2), we stream from infinity 2 

consider perturbations in the main deck of the boundary layer of the form 

u .... u =Sy2u +Sy u +. 
u"  u "  " 2. .. 

p* p* _ p" = 82p1,. + B3p2m + Ro + ¢ 0 2 .  + .... . . .  

(9.1) 
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subject to the condition that the arguments T, X, Ym of the required functions uj,,, = up,(T, X, Y~), 
Ujm = Ujm(T,X, Ym), Pin = Pjm(T, X, Ym),Pjm = pj~(T,X, Ym) (J = 1, 2 . . . .  ) are defined by the expressions 

,. x. = .-7;- I , = L* 1 + X = L*eaYm (9.2) 
U** 

then the velocity field again acquires a multi-deck structure. The order relation ~ = e8/9 (where, as before, 
c = Re -1/8) corresponds to the type of interaction with a transonic outer flow which was analysed for 
the first time in [19] and is characterized by a triple-deck pattern of the perturbed motion. Compared 
with the case when the Mach dumber differs from unity by a finite amount, the special feature of the 
theory in [19] is the fact that the interaction condition in it becomes dynamic (time dependent). 

The increase in the amplitude of the pulsations, namely, the inequalities 

E ~ "~ 8 ,~ ! (9.3) 

which are satisfied leads to the appearance of a quadruple-deck asymptotic structure, since the lower 
subdomain of the non-linear motion separates into an inviscid part and a viscous sublayer close to the 
wall, immediately adjacent to the surface. A boundary layer with a self-induced pressure in a transonic 
flow has been considered in [20] for the case when there are perturbations of comparatively large 
amplitude of the form of (9.1)-(9.3) in it. It was shown in [20] that the system of equations 

~t~x ~x 2 Oy~ 

b(A+G_______~) +(A+G) 3(A+G_________)= ~p 
at ~x ~x 

(9.4) 

(9.5) 

bq)(t, x, O) b~t ,  x, O) OA(t, x) (9.6) 
Ox = -p(t,  x), OYu = bx 

holds in a special dimensionless system of units in the case of locally inviscid perturbations. 
The potential (p(t, x, Yu) of the outer velocity field obeys Eq. (9.4) in which the transonic parameter 

2 1 K~ = O(1) characterizes the quantity (M~o - 1)8-. The limit asyu ~ 0 corresponds to a transition from 
the potential part of the flow in the main deck of the boundary layer and relations (9.6) are the conditions 
for matching with (9.1) on its outer edge as Y,, ~ oo. 

If the dependence of all the stream function on time and the spatial coordinate is defined by the self- 
similar variable x - ct, then, from (9.4), we have 

• 2 

( c - K .  ) ~x2 "~-.~.2 = (9.7) 

Consequently, O(p/Orlu + i&p/&, where ~u = (c -IQ)l/2y u is an analytic function of the complex variable 
x + irlu. The Schwarz integral for the upper half plane, as it applies to this analytic function, can be 
written in the form 

i~(t,x,O) = l ~ ~(t,x,O)/~y~ 
~x re(c- K.. )~ ' ~ - x a~ 

(9.8) 

On substituting" " boundary conditions (9.6)_~/2into (9.8), we obtain an interaction condition which differs 
from (3.10) solely in the coefficient (c - K®) on the right-hand side. In particular, the periodic solution 
of system of equations (9.4)-(9.6) is found by making the substitution 

x---~ x(c-K**) ~,  t...~ t(C-K**) ~,  k- .)  k(c-K**)-~ 

in formula (7.10). Hence, all of the soliton-type solutions mentioned in Sections 4--7 (as well as those 
discussed in [21-23]) also hold in the case of the equations which describe the free interaction of a 
boundary layer with an outer transonic flow. 
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