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Large-scale structures with an inviscid, non-linear subdomain (deck) on the bottom of a boundary layer in the case of subsonic
and transonic free stream velocities are considered. A class of locally inviscid perturbations with an internal line of discontinuity
of the tangential velocity, which leads to the appearance of a free term on the right-hand side of the Benjamin—Ono equations,
is investigated. The shape of the above-mentioned line is sought and it is determined from the solution of a system of one-
dimensional non-stationary equations in which, apart from the Benjamin-Ono equation, a kinematic condition and an equation
for the inviscid deck close to the wall also occur. An example of a periodic, non-linear solution is constructed and amplitude
constraints which ensure its realization are formulated. © 2000 Elsevier Science Ltd. All rights reserved.

1. ESTIMATES OF THE SCALES OF THE PERTURBATIONS.
ASYMPTOTIC EXPANSIONS IN THE MAIN PART OF THE
BOUNDARY LAYER AND IN THE POTENTIAL FLOW DOMAIN

Suppose the profiles of the longitudinal component of the velocity #* and the gas density p* are specified
by the functions Uy(Y,,)U% and Ry(Y,,)p% in a boundary layer at a distance L* from the leading ed§e of
the flat plate. In these functions, the coordinate, normal to the plate, is ¥, = e*L*! £ = Re"® and
the Reynolds number Re = pLU%L*/u%, — «. Henceforth, dimensional quantities are denoted by asterisks
and the subscript o refers to parameters of the unperturbed flow at infinity. The origin of the Cartesian
system of coordinates x*, y* is placed at the leading edge and we assume that the free stream of gas with
velocity U%,, Mach number M., and viscosity coefficient p? is directed along the x* axis.

If the longitudinal component of the velocity UyU% is perturbed by an amount of the order of al%,
a < 1 in the domain of the boundary layer of the length x* — L* = £L*, £< 1, then, according to the
continuity equation, the perturbation of the vertical component of the velocity v* is of the order of
ag*¢”'U*. This estimate holds when the inner variable of the boundary layer Y,, = O(1). The excess
pressure p* — p*%,, which is induced by the increase in the displacement thickness, in the potential flow
outside the boundary layer (Y,, > 1) is estimated as ag*¢"'p* U *2. On the other hand, in the non-linear
part of the boundary layer close to the wall Y,,, < 1 or, more precisely, Y,, = O(a), Uy = O(a), the
order of the excess pressure a’p%U%” is determined by the quadratic terms in the equations of motion
and the time ¢* has a characteristic value € 'L*U*"!. The relation ¢ = ¢*a”' is obtained from this.
Note that, at short distances of the order of ¢L*, the dependence of the functions U, and R, on the
coordinate x* is unimportant and will not subsequently be taken into consideration.

Hence, for the class of perturbed motions in the main deck of the boundary layer (deck 2) which are
being considered, the expansions of the gas parameters in asymptotic sequences has the form

£ ] *
u 2 v 2
U—,-Uo+aul,,,+a Upy + .0 7 Uy + 00y, +...
o .. (1.1)
— 2 14 —peo_ 2 3
—=Ry+op, +a‘p,, +..., —th——oz Pim T Py + ...
oo pm 00

and the arguments 7, X, Y,, of the required functions w, = (T, X, Y,,)), (T, X, Y,), pim =
Pim(T, X, Yin), Pim = Pim (T, X, Y,)) (j = 1, 2, .. ) are defined by the expressions

. L et * * ¢t * *
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tPrikl. Mat. Mekh. Vol. 63, No. 6, pp. 955-971, 1999.

893



894 V. 1. Zhuk

We substitute expressions (1.1) and (1. 2) into the system of Navier-Stokes equations. Some of the
first terms of the above-mentioned expansion will then satisfy equations which are identical in accuracy
with those derived for the main deck of the triple-deck theory of free interaction [1-5]. When account
is taken of the second-approximation terms which have been written out above, we obtain

wy = AT, )80 i

Ay,
ay, Vim= ox Yol

dR
m = AT, X)dYo Piw = Pn(T, X)

X v ,

tym = ~MZUopin — | =7 dX (13)
-0 m

aA‘ aAl dUo 2 ap]
=-20_4 —Y,Uy(M2 —1) %P _
Vim==gr ~Aax ay, UMDy

aplm T 1 , aAZ
~Up 2z [} i
0 I |:R0(Y' )UO(Y') ]de ox Uotn)

1 d d ?) 0A
Pam M2R0P1m+2A12U0 ar, (Uoldl;o] I'a"gl('gﬁ“wzm)dx'

where the functions A; = A (T, X), A, = Ay(T, X) are arbitrary.
The asymptotic form of the solution of (1.1) in the upper edge of the boundary layer follows from
(1.3) and, taking into account the limit properties Uy — 1, Ry — 1, we find, when Y,, — o

u. 2 U‘ 2aA|

= 1-ap,, +... — -0 —+...

: P UL ax

. 1.4)

*
oo
00 0o

As far as the external potential flow is concerned, in the deck 1 which is adjacent to the boundary layer
from above, the following expansions hold

*

- 2 3 _ 3
—=1+0u, +’u,, + —=a%,, +a%,, +

u

’ 2 P’ -pa
-p7=1+a Pra +0Pg, +..ns —7(]T=G2P1u+aspzu+--- (1.5)
oo poo o

The arguments T and X of the required functions u, = u;,(T, X, Y,)), vy, = vju(T, X, Y, ) P = P(T,
X, Y., o =pp T, X,Y,) = 1,2,...) are specified by relatlons (1.2), and the variable Y, is introduced

by the equality
y' = ey, (16)

The form of expansions (1.5) is dictated by the asymptotic formulae (1.4) and, moreover, Y, = aY,,.
The representation of the solution of the Navier-Stokes equations by means of (1.5) and (1.6) gives

duy, , 0Py, 9V, _ u, . 9py =
x Tax Ty, X ax 0
aUlu +apln =0 aplu =_1__aplu (17)

9X 9Y, ~ 9X M2 X
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Hence

op,, v op dv
1- M2 lu . lu, lu . “%iu
(1-n2) ax ar,’ oY,  ax

and the function p (T, X,(1 - M2Y2Y,)+i(1 - M%)"?0, (T, X,(1 — M~)""2Y,) is an analytic function
of the complex variable X + iY,. The Schwartz integral for the half-plane, as it applies to the above-
mentioned analytic function, has the form

plu(T,x,0)=%(1-M3,)’V2 i “—'é—i%gzdg (1.8)

Here, the integral is understood in the sense of the principal Cauchy value.
If Y, - 0, then Y,, - o and, by virtue of (1.4), matching of the asymptotic expansions (1.1) and (1.5)
lead to the conditions

N
3).¢

The function to be determined 4; = A,(7, X), together with the pressure py,, (T, X), characterizes
the magnitude of the instantaneous displacement of the streamlines in the boundary layer with respect
to their unperturbed position when X — — . The perturbation of the pressure in the outer, potential
flow domain 1 is induced by an increase in the displacement thickness, which is described by the function
A, and is transmitted, according to the first of formulae (1.9), into the main deck of the boundary layer
and, in turn, affects its displacing action. This mechanism finds reflection in the interaction boundary
condition [1-5], which formally follows from (1.8) and (1.9)

plu(T'X’O)=plm(TvX)’ vlu(T’X’O).—-— (19)

=Ygy i T ATE)E 1.10
pin == (- M)A | DS (1.10)

2. ASYMPTOTIC EXPANSIONS IN THE NON-LINEAR REGION ON THE
BOTTOM OF THE BOUNDARY LAYER

When Y,,, = O(a), the velocity perturbation becomes of the order of the velocity itself. Actually, in
the unperturbed boundary layer

Up=MY,+.... Ry=p+... Y,—-0 .10

The expression for vy, from (1.3) contains an integral which diverges at the point Y,, = 0. The
behaviour of this integral in the neighbourhood of the given point is determined not only by Ay, ry but
also depends on the higher terms of the expansion of the functions Uy, R, using Taylor’s formula. We
will therefore refine formulae (2.1), assuming that the surface is thermally isolated and, consequently,
the equalities d*Uy(0)/dY?, = 0, dRy(0)/dY,, = 0 hold. Then, by virtue of (1.3), expansion (1.1) in the
limit as Y,, — 0 can be written as follows:

*

-(‘;—_= MY, +0A A +O0(0)

v o2 YAy, 3 %A A, 1 %P |, oret

TR R 0‘[aT“L‘A' ax T ax | TO@) (2:2)
F = +00?)

Po

Comparison of the first two terms in the expression for u* from (2.2) leads to the estimate given above
for the magnitude of the transverse coordinate Y, which establishes the lower boundary of deck 2. We
now introduce deck 3 with a thickness of ae'L*, where non-linear effects predominate, which is
contiguous to deck 2 from below. The gas parameters in this domain can be represented in the form
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and the unknown functions u;, = (T, X, Y,), vjs = V(T X, Yo), piu(T, X, Ya),pja.= pja(T,'X, Y.
(j = 1,2,...) contain the variable Y, = O (1) as one of the arguments. The expression defining the
variable Y,

y' = Lag'y, (2.4)

gives the obvious relation Y, = aY,.
The system of equations

apla + aplaula + aplav la 0 é@_ =0

]

oT oX oY, a7y,

g dug _ 3y, £ 3 Oy 25
Pla‘gifL"'Pla“la X P 1a oY, X P ) A l‘13}’,, 23)
apla apla apla __.__i _a_ h a ....1_
aT +ula aX +v la aYa a4 pla aYa Pl' aya pla

follows from representation (2.3).
Here, u = p*u;;"l is the first coefficient of viscosity and Pr is the Prandtl number.
The limiting conditions when Y, — oo, which the solutions of system of equations (2.5) must satisfy,

follow from asymptotic expressions, one changes from the variable Y,, to the variable Y,. In particular,
the property

P, +0@)
pe.

holds when X — - and Y, — o (under the assumptions made in deriving (2.2)) and this enables us
to assume [2, 6] that

everywhere in the non-linear deck 3.

The triple-deck model of free interaction [1-5], constructed to describe different types of motions
of a liquid and gas under conditions when problems regarding the viscous flow domain and an outer
inviscid flow do not split and must be solved simultaneously, is based on asymptotic expansion with
respect to a small parameter ¢ = Re™'/8. The elements of the approach considered here which are.new
compared with the theory proposed earlier are the introduction of a parameter a, which is independent
of the Reynolds number and can be of a smaller order than the parameter €, and a different normalization
of the variables ¢*, x*, y*. If one puts . = ¢ in expansions (1.1), (1.5) and (2.3) for decks 1, 2 and 3
then, as can be seen from Eqgs (2.5), the viscous tangential stresses in domain 3 become so important
that they are also the mechanism of the non-linearity. In this case, we return to the triple-deck theory
[1-5] which enables us to reduce the problem of an interacting boundary layer to the solution of system
of equations (2.5) with the boundary conditions

,=20: u,=v,=0, Yo 4y, aM(Y,+A4)

and the additional condition (1.10) with p,,, = p;, and Y, = Y,.



On vortex perturbations in a free-interacting boundary layer 897

3. SPLITTING OF THE NON-LINEAR DOMAIN ON THE BOTTOM INTO
TWO SUBLAYERS IN THE CASE OF COMPARATIVELY LARGE
AMPLITUDE PERTURBATIONS,

We will now consider the asymptotic structure of a perturbed flow, assuming that the in-
equalities

g€ <l (3.1)

are satisfied.

In this case, as can be seen from Eqs (2.5), the non-linear part is split into 2 mam inviscid sublayer
Y, = O(1) and a viscous sublayer, adjacent to the wall, of thickness Y, = O (a%?), and expression (2.4)
still holds for the variable Y,. As previously, we mean by deck 3 of the quadruple-deck scheme of the
perturbed velocity field which arises, the sublayer Y, = O(1) in which expansions (2.3) hold and in which
terms in Eqs (2.5) containing the viscosity coefficient u can be neglected. The lower boundary Y, — 0
of deck 3 serves as the outer edge of deck 4 which comes into contact with the plate surface and for
which the characteristic vertical coordinate Y, = O(1), y* = L*a'€%Y, is introduced. The expansions
of the stream functions in deck 4

*

2 = au (T, X,Y)+... :/ =0e%, (T.X,Y,)+...

U. -
L, ’;.;}f{ =o?p (T, X.Y,)+... (3.2)

leads to a system of Prandtl equations with the boundary conditions

Y(=0 . Uy, =vy, =0 (33)

Y, =0 :  uy - u,(T,X,0) (3.4)

Boundary-value problems for the principal terms of the expansmns of the gas parameters in decks
3 and 4 will not contain the constants A, 7o § = (M2, = 1)"2 nor the viscosity coefficient py = u(ry™)
calculated at the temperature Ry~ 1(Y,,) of the unperturbed boundary layer when Y,, = 0, if the following
similitude transformation is carried out {1-5]

t=b'T, x=b"X, y=y,=b'Y,, y=b"=Y, A=b"A

(3.5)
u=b"u,, v=0v, u=bw, v,=tv, p=bp,
where
b ="t br ="l
b = Niriugish, bP = W (3:6)

b = N fbughh, b = aPhrdiugts 4

In the variables (3.5) and (3.6), the system of equations (2.5) for the non-linear inviscid deck 3, subject
to assumption (3.1), can be rewritten as follows:

8u+ ou .E_)_".._ dp au dv _ dp

i EmT ST e wy Yy

On replacing the variable Y,, in (2.2) by the variable Y, = o'Y,,, we obtain the limit form of the
expansions (2.3) when Y, — co. In particular, the leading terms (with respect to the parameter o) of
expressions (2.2) specify the asymptotic form of the functions u,,, vy,, P14, P1, On the upper edge of
deck 3. As can be seen from (2.2), the above-mentioned functions, rewritten in the special system of
units (3.5), (3.6), possess the following behaviour asy — «

=0 (3.7)
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__0A A ,0A 9 (3.8)
usy+4, v= FRRGRY ox ox

Expressions (3.8), which establish the asymptotic boundary conditions for system of equations (3.7)
satisfy this system identically. Hence, functions (3.8) can be continued into the domain of finite values
of y as solutions of system (3.7) and the conditions for the matching of the asymptotic expansions in
decks 2 and 3 in the limit as y — o will be satisfied.

We now return to the matching of the asymptotic expansions m decks 3 and 4 (assuming that there
are no irregularities with a vertical dlmen51on of the order of oe* on the surface of the plate around
which the flow occurs). The relation Y, = o’e™2Y,, follows from the definition of the transverse coordinate
Y, for the lowest deck 4 which is adjacent to the plate and, by virtue of (3.1), the variable Y, —» co when
Y, — 0. The internal limit of expansions (2.2) as Y, — 0 must be identical with the external limit of
expansions (3.2) and Y; — . This means, in partlcular that the function vy, (and, chang2 ng to the
variables (3.5) and (3.6), also the function v) must be of the order of a “2¢2 wheny = O(a%?). If the
function v is taken from solution (3.8) of system of equations (3.7), then the above-mentioned limit
property can only be satisfied when the condition

oA, A _170%A0})I%" 3.9
o Aax—n_’[, E—x % 39)

is satisfied, since the functions p and A4 are independent of the variable y and relation (1.10) between
them, in the system of units (3.5), (3.6), acquires the form

LT AR 4

e (3.10)

p = -

One of the conditions for the matching of the leading terms of expansions (2.3) and (3.2), which is
expressed by Eq. (3.9) (known as the Benjamin—Ono equation [7, 8]) is equivalent to impermeability
condition v = O wheny = 0 by virtue of (3.8). In the triple-deck theory [1-5], if the displacement thickness
A and the self-induced pressure p can only be determined when solving the boundary-value problem
in the viscous sublayer adjacent to the wall, the quadruple-deck scheme reduces the construction of
the two-dimensional flow pattern in decks 153 to the solution of one-dimensional equation (3.9). The
flow fields in these decks are established using the function 4 by means of formulae (1.3), (3.8) and
(3-10). As far as the viscous deck 4 close to the wall is concerned, the function u,(7, X, 0), which occurs
in asymptotic condition (3.4), after the change of variables (3.5) and (3.6), is identical with 4 = A(t, x)
as can be seen from (3.8). In this sense, deck 4, which is close to the wall, plays a passive role since the
flow parameters in it are determined using the pressure and velocity distributions on its outer edge,
which are found independently.

The possibility, which has been pointed out earlier [9], of descrlbmg the mechanism of the interaction
on the basis of the Benjamin-Ono equation (or Burger’s equation in the case of a supersonic flow velocity
in the deck 1) and the realization of a quadruple-deck structure is a consequence of inequality (3.1);
passing to the limit of high frequency pulsations within the framework of a triple-deck scheme [1-5],
which is accompanied by stratification of the lower deck close to the wall, also leads to the above-
mentioned equations [10, 11]. The modification of the theory under consideration in order to apply it
to the problem of the flow past a small irregularity on a plate with a vertical dimension of the order of
ag* reduces to the appearance of a free term on the right-hand side of Eq. (3.9). It has previously been
shown [11, 12] that the free term serves as a source of self-excited oscillations in the form of SOlltOl’l
solutions even in the case of steady-state boundary conditions.

The steady-state analogue of system of equations G. 7) describes one of the subdomains in the
asymptotic problem of the reattachment of a supersonic flow [13] and, also, the neighbourhood of the
separation point of the boundary layer on a wall which is moving downstream [14]. Supersonic flow
past a plate with periodically oscillating screen and the propagation of the perturbations, caused by a
sudden change in the bottom pressure, along the surface of a wedge have been treated in [15] as examples
of unsteady locally inviscid flows with interaction.

4. THE STRUCTURE OF DECK 3 WHEN THERE IS A TANGENTIAL
DISCONTINUITY IN THE VELOCITY

We will now consider a moving contour defined by the equation
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=ae'L'G\(T, X) (4.1)
T and X are defined by formula (1.2) and the components of its outward normal are
x 1 ay‘ 2 aGl
HET DT YT ax

The velocity of the contour along the normal to it, o, can be replaced, apart from quantities of
the order of v¥, by a derivative of function (4.1) with respect to the time #* (which is of the order of
).

We set up an impermeability condition on the contour (4.1), assuming the contour is a streamline.
Since it is a distance from the solid wall which is equal in order of magnitude to the thickness of the
inviscid non-linear deck 3 in which the coordinate Y, = O(1) is specified by means of (2.4), then, subject
to the impermeability condition u*n, + v*n, = v7, functions of the first approximation of the asymptotic
series (2.3), confining ourselves to the leading terms of the expansions of the components of the normal
n,, n, with respect to the parameter ., have to be taken as the gas velocities u*, v*. Hence, the kinematic
condition on the line (4.1) in the special system of units (3.5), (3.6) for deck 3 takes the form

where G(¢, x) = ¥G(T, X) and the coefficient &’ is defined in (3.6).

We shall assume that solution (3.8) obtained by analytic continuation from deck 2 holds in the
subdomain G(t,x) <y < + o of deck 3 up to its lower boundary y = G(t, x). Substitution of expressions
(3.8) into (4.2) then leads to the relation

B(Aa+G)+(A G)a(A+G) ap =0 (43)
t ox

We will denote by ¥ an operator, the action of which on the function f(z, x) is expressed in terms of
a Cauchy-type integral

=]

By virtue of (3.10), condition (4.3) has, as a consequence, the Benjamin-Ono equation

rt rt 2
oA, ;9 _%{a

—_— — 4.4
Ykt w3 } o) “4)

in the function4 = A + G and the free term on the right-hand side of (4.4) is determined by the function

G = G(t, x) as follows:
2
ot x) = %{3 G} 4.5)

Suppose the surface of the body around whlch the flow occurs (which is a flat plate) has an irregularity
with a vertical dimension of the order of as*L*. Then, in the variables in which equations (3.7) are
written, the shape of the solid surface can be defined by the equationy = F(x). Equations (3.7) imply
that the vorticity

0ot
dy
is conserved along the streamline
%0 + ua—m +v v _ 0
ot ox dy
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We will now consider the solution of the system of equations (3.7) with a constant vorticity o = €
in the subdomain F(t, x) <y < G(¢, x) of deck 3

u=Qyy+6(tx) (4.6)
The impermeability condition on the solid surface y = F(x) leads to the expression
2
v =—y20 , OF8 Qo oF (47)

+
dx Ox 2 ox
We substitute (4.6) and (4.7) into the kinematic condition (4.2); then

39+i[(c-p)e+&(02 - Fz)]=0 (4.8)
ot ox 2
The pressure gradient is established using the first equation of system (3.7)
30  _ 00 ad Q dp
—+0—+Q,—| FO —°—F2)=——— 4.9
o ax °ax( 2 ax *9)

On the line y = G(t, x), the velocity component which is tangential to it, generally speaking, suffers
a discontinuity.

5. SOME EXACT SOLUTIONS OF THE BENJAMIN-ONO EQUATION

Suppose A(t, x) is the solution of the homogeneous Benjamin—-Ono equation (3.9). It can be verified
that, for any value of the parameter p, the function

Ayt %)= (1-P)AI(1 - p)t. x]

satisfies the Benjamin-Ono equation with the inhomogeneous right-hand side

dA, A A, % 2’A,
at (] ax = axz ¢(t’ x)
if the free term
gl Bo _
o(t,x)= ? ) Bp(t,x)-pAp(t,x)

We now consider the solution, which is periodic with a spatial wavelength of 2nk™" and a frequency
kc, of the homogeneous Benjamin—-Ono equation

-1

2 24
At x) = 2:—{1 - [1 - ’;—2} cos[k(x — ct)]} .1)

which depends on two parameters: the wave number & and the phase velocity ¢. The function (5.1) is
even with respect to k, and we shall therefore assume that &k > 0. As far as the sign of ¢ is concerned,
expression (5.1) only specifies the solution of the Benjamin-Ono equation when ¢ < 0 and therefore
represents a wave which is always travelling upstream.

If A(z, x), is the solution of the Benjamin—Ono equation, then

GA(%G*1,%x) (5.2)

and
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D+ A(t,x — Dt) (5.3)

are also the solutions at any 6 and 9.

Application of transformation (5.2) to the periodic solution (5.1) of the Benjamin-Ono equation is
equivalent to the changes in the wave number and phase velocity: k — %k, ¢ — %c, and, hence, does
not increase the number of parameters occurring in this solution.

Transformation (5.3) (the change to a system of coordinates moving at a velocity -%) leads to the
three-parameter solution

2k2 K2 )]
A(t,x)= 9»———l [1 I—-‘,-] cos[k(x + (I c1-)1)] (54)

We recall that, in (5.1), ¢ < 0 always. In view of (5.2), (5. 3) can be considered, without loss of generality,
as the steady-state solution with a period of 2x, on putting @ = | c |, k = 1 and confining ourselves to

a single parameter which is taken as
2 Ve
0< €y = (1 - ——) <1

Hence the function

1 21-¢€d)
A, =A0 = — Q .
2= 40 (1-g2)” [1 1-¢, cosx] (5:5)

is the solution of the homogeneous Benjamin-Ono equation. The extremum values of the function (5.5)
at the pointsx = 0 andx = = are

1+2¢ 1-2¢
Anin ==~ Ay = -8 (56)
(1-¢4)? (1-¢9)?
Substituting the parameter 8, which is equal to the amplitude of the non-linear oscillations
8
80 = A - A in® €a = _—0__
‘max min 0 (8(2) +16) Y

into (5.5) instead of &), we obtain a further representation of the 2n-periodic steady-state solution of
the Benjamin—Ono equation
@ +16/% 8

Ag(x) =
4 (82 +16)2 ~ 8, cos x

(5.7)

As 85— 0, (5.7) defines a neutral Tollmien-Schlichting wave in a system of coordinates which moves
downstream at a velocity [c | —» 1 + 0

Ao(x)=—1—§2‘lcosx+0(83)

When §; — , the limit form of (5.6)

& (1 _ 3%, (1

shows that solution (5.7) is sign variable and the deviation of the function Ay(x) downwards from a zero
value is three times greater than the deviation upwards.

We will rewrite solution (5.7) under the assumption that the amplitude of the oscillations tends to
infinity 83 — o
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-1
Ap(x) = ———-+ —8—20— 0[8—1(3)} 880 [l —cosx+—5 80 {3%-)] (5.8)

In the case of 1 — cosx = O(1), the asymptotic form of solution (5.7) for 8y — « is defined by the

expression
1
Ao(x)—'z""o[aoj (5.9)

Hence, in the limit of large amplitudes which is being studied, solution (5.7) tends from below to a
constant value equal to its maximum value. However, as can be seen from (z .8), the asymptotic
representation (5.9) ceases to be valid in the narrow domains 1 — cos x = O(3y ). As a consequence
of the periodicity of the solution, we will confine ourselves to considering it in the neighbourhood of
zero. On expanding the function cos x in (5.8) in a MacLaurin series up to O(x*) as x — 0, we find

52 T
Ao) =2 -5 {”12" »ro(8 H (5.10)
0

The asymptotic form (5.10) of solution (5.7) is a solitary standing wave on a nof-zero background
8¢/4 (a soliton on a pedestal). Formula (5.10) holds in the domains x = 2mn = O(8; ') (n = 0, 1,2,.. ),
and therefore specifies the solution in the form of narrow tongues.

6. SPECTRAL DECOMPOSITION OF THE NON-LINEAR PERIODIC
SOLUTION OF THE BENJAMIN-ONO EQUATION.
EXPANSION IN A SYSTEM OF EQUIDISTANT SOLITONS

We shall now indicate other forms of representation of periodic solution (5.1). Suppose that

A 2\ %
k k2 k
=—Ill-—1| , ch 1-=5 _
3 ICI(l c? ) cha = [ czj (6.1)
Then
A(t,x)=— 2ksh2 =21Im ik1+exp[—9,—1:k(x+|c|t)] -
chQ —coslk(x+|c|1)] 1-exp[—Q — ik(x+| c| 1))

=-2 Im{ik[] +2 i exp[—(2 + ik(x+| c| t))N]]} =
= (6.2)

= Zk{l +23 (‘ cl- ] cos{kN(x+ | :)]}
N=i\|c|+k

(when obtaining the last equality in the chain, the quantity exp (-2) was eliminated using (6.1) and the

imaginary part was separated out).

It can be seen from the spectral composition (6.2) of the coherent soliton structure that the amplitudes
of the spectral modes of the periodic solution (5.1) form a geometric progression in Fourier space. At
the same time, in physical space, solution (5.1) decomposes into strongly non-linear localized structures
for any relations between the parameters | ¢ | and k and-not only in the case of formula (5.10) being
described, for the limit | ¢ |k — o (gy — 0, 83 — ). This last assertion was formulated earlier [16] and
is based on a consideration of the integral

2 -1
_ _ 1{,- 2 dff
l_fl(n 2k%) +C] exp(2miZ) —1 (6.3)

along a closed contour I in the complex plane %.
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Suppose the contour "is the circle | £ | =Ry =N+ 12(N=1,2,...).
Then, on representing integral (6.3) in the form of a sum of the residues at the poles of the integrand
and taking account of the fact that this sum tends to zero when N — o, we obtain

Athk, = oY, o]
—]—J]kagcoskn~ "=zﬂ4 (n 2 k) +§] (6.4)

The left-hand side of this equality when

thkc=-£-, n=x+|clt
lcl

is the solution (5.1) of the Benjamin—Ono equation. The non-linear periodic solution (5.1) can be
represented as a sum of solitons equidistant from one another

-1
2 2 4
A(t, x) =—T—’:T{l —[I -—-l-{:-l-i-] cos[k(x+| clt)]} =

(6.5)
- i — 4|c|0 - 0=-£—arcth"—k—
mao 1 1C]” 0°(x+|c|t=2nR/k) el icl

Note that, 6 < 1 always and it is therefore only in the limit 8 — 1, which is attained when &/|c| —
0, that each term of the sum (6.5) is an exact solution [7, 8]

4]c|
1+lcl? (x+]c|8)?

A(t, x)=— (6.6)

of the Benjamin-Ono equation in the form of a solitary wave (a soliton). Solution (6.6) is obtained by
applying the transformationx - x + |c |t, A - A — | c | to solution (5.10) and, in the last solution, one
has to put 8, = 4| c |.

7. AN EXAMPLE OF A PERIODIC VORTEX STRUCTURE IN THE CASE
OF A TANGENTIAL DISCONTINUITY IN THE FLOW

According to the remark made at the beginning of Section 5, the introduction of a line of tangential
discontinuity in the velocity

y=G(t, x)=pA(t, x), A(t, x)=(1-p)A[(1-p), x] (7.1)
enables one to assert that the equation
A -0A_ op
AN k. & 7.2
or tA ox ox 2)
will be satisfied if
25 2
%E == {%x—z-} -0(1, x), ot x)=% {%;E}} (7.3)

where, in (7.1), A(t, x) is any solution of the Benjamin—-Ono equation (3.9).
We shall seek a solution of the system of equations (4.3), (4.8), (4.9) and (7.3) in the form of a travelling
wave with a phase velocity c¢. Then

p=cA-A’/2+%, (7.4)

Henceforth, we will confine ourselves to the case when F = F; = const. From (4.9), we have
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p=c0-02/2+Q,FR®+¥, (7.5)
and if we put
0=A-QyF, (7.6)

then continuity of the pressure on the line of tangential discontinuity y = G is ensured by the following
choice of the constants X, ¥, from (7.4) and (7.5)

K, — Ky = cQoFy — QU FE 12

We now return to Eq. (4.8) in the function G. The assumption concerning the self-similarity of its
solution being of the type of a travelling wave with velocity ¢ establishes the relation

¢G-8G+OF) -0,G* 12=%, (7.7)

We assume that the constant X3 = QF 32 — cF,, and relation (7.7) is then satisfied in the case of the
function

G=p@-0)-F (7.8)

subject to the condition

= -2/Q (1.9)

We now take function (5.1) as the solution of the Benjamin—Ono equation. Then, the periodic solution
of Eq. (4.4)

. 201 _ 274 -
A(t, x) = -2—"——(}—"-){1 - [1 - :_’] cos[k(x — (1~ p)t)]} (7.10)

corresponds to the free term (4.5) which is induced by a line of tangential discontinuity of the following
form

-1

2k* K2 %
y=G(t, x)=Fy—cp(l-p 1-7 1—[1 -?-] cos{k(x ~c(1—p)1)] (7.11)
The expression from (7.11) in the outer braces is negative in the case when

(a)y
J

2
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(a) y

10
o0
®) ¢
-1
-15
- -5 g 5 z
Fig. 2.
lel/2<k<c| (7.12)

For (7.12), the line of discontinuity does not intersect the solid wall if p(1 — p) < 0, and, hence, the
condition

p<0or p>1 (7.13)

together with condition (7.12), ensures the realizability of the flow model with a line of tangential
discontinuity of the velocity located in the stream.

A theoretical model of a recirculation zone with a characteristic length L* of the order of magnitude of the chord
of a thin body was proposed earliér [17]. Assuming that the width of the separation zone A* does not exceed the
body thickness, a system of equations was derived where the shape of the boundary (which is a contact discontinuity)
of the vortex region was one of the unknown functions. It was shown that substantially non-linear unsteady
perturbations lead to the breakdown, at a final instant of time, of this two-layer structure as a result of focussing
and the ejection of the vortex. If alU*,, is the order of magnitude of the velocity in the se Iparatlon zone, the structure
considered above, as applied to the flow model in [17], occurs in the case when #*L*" = O(aRe™"?).

The streamline pattern for deck 3 when there are no velocity discontinuities is shown in Fig. 1(a) if the function
(5.7) with 8, = 1 is taken as the solution of the Benjamin-Ono equation (which describes the non-linear motion
in this region). Solution (5.7) itself is shown in Fig. 1(b).

Figure 2(a) illustrates the configuration of the streamlines for the flow in deck 3 with a contact discontinuity
(represented by the dashed curve) in a moving system of coordinates, where the corresponding solution of system
of equations (4.3), (4.8), (4.9) and (7.3) is a steady-state solution. We have put p = ~2 in (7.1), and the function
A = A - G (associated with the self-induced pressure in accordance with formula (3.10)) is shown in Fig. 2(b).

8. THE CHARACTERISTIC INSTABILITY OF THE DISCONTINUOUS
SOLUTIONS OF THE ASYMPTOTIC EQUATIONS IN
THE SHORT-WAVELENGTH LIMIT

The instability of a tangential discontinuity in a homogeneous medium with respect to infinitesimal
perturbations [18] without allowing for the finite viscosity is such that the amplification factor of the
perturbations increases without limit as the wave number increases.

We shall seek a solution of the system of equations

WAG), 4, 24%0) _
ot +(A+G) ox  ox
39 +0%® 8@ _dp (8.1)
3 ox  ox
aG ) Q 2]
G 0
“or ax [GE-) 3 2

1 ABIE

T _» -X
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in the linear approximation. We put

ik(x~ct)

(A, G, ©, p)=(Ag, G, 8y, o) +(A". G', €', plae (8.2)

where the amplitude factor a is assumed to be small. Considering short-wavelength perturbations, we
assume that the quantitites 4q, Gg, @y, Boare constant. Substituting expressions (8.2) into system 8.1
and neglectmg terms of the order of a°, we obtain a linear, homogeneous system of equations in 4',
G', @', p’, and it follows from the fact that the determinant of this system is equal to zero that

-Es1gnﬂo[(90 - ¢)? +Gy(Ag — )] ' (8 — ) X

X {i€2,Gq — (O — XAy — €) + [(i20Gy + (8 — c)Ag — )’ +

+4iQ0Go(Ag - V2),  Ag=Ag+Gy ®
Expression (8.3) is obtained taking account of the equality
15 e d& = isign ke™ (8.4)
R LE—x
which enables us to rewrite the last equation of system (8.1) in the form
p’=klA (8.5)

In (8.1)~(8.5), the wave number of the perturbations k is assumed to be real. As |k| — o, we find from
(8.3) that

c=k- iﬂoGo lk (8.6)

It is clear from (8.6) that inviscid instability (with respect to infinitesimal perturbations) of flows of the
class under consideration with a line of tangential discontinuity is such that the imaginary part of the phase
velocity tends to zero as k increases. In this sense, the behaviour of the perturbations being studied here
is qualitatively different from the instability pattern of a contact discontinuity in an ideal fluid which is
described by the complete Euler equations [18], where an increase in k is accompanied by an unlimited
increase in the amplification factor of the perturbations. This substantial retardation in the growth of the
perturbations is explained by the fact that, in system of equations (8.1), an interaction mechanism between
the change in the shape of the line of discontinuity and the outer potential flow through the main deck
of the boundary layer is established. In other words, even in the short-wavelength limit, model (8.1) remains
non-local (in a direction along the normal to the surface around which the flow occurs).

Of course, a formal treatment (based on Euler’s equations) of a small neighbourhood, containing a
small part of the line of discontinuity and in which the flow may be considered as being homogeneous,
leads to the identical conclusion [18] that a tangential discontinuity is always unstable. However, this
treatment is meaningless as applied to the flow under investigation since, in the high wave number limit,
the viscous structure of the contact discontinuity, which is, in fact, a mixing layer with a thickness of
the order of Ay = Re""a? < 1, becomes important.

9. A QUADRUPLE-DECK ASYMPTOTIC SCHEME FOR FLOW AT
TRANSONIC VELOCITIES OF THE OUTER STREAM

We will now extend the flow model, which has been introduced above, to the case of a transonic free
stream from infinity M2 -1 = O(SKQ) where & — 0, K, = O(1). If, now, instead of (1.1) and (1.2), we
consider perturbations in the main deck of the boundary layer of the form

L;‘-—'-Uo +8U|m+62u2m+.... 'u_.=a%vlm+syzuzm+'“
U U.

‘ (9.1)
-p-.-=R0+5p,m+82P2m+n-, P‘ P.. -'52plm+8 Pt

pn pwU‘”
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subject to the condition that the arguments 7, X, Y,, of the required functions w;,, = w;,(T, X, Y.),
Vjm = Vi1, X, Y), Pim = Pim( T, X, Yo ), Pjom = Pjim( T, X Y)(=12..)are defined by the expressions

4 4

L £ €
a= l #= »* t= *_ 4 2
t ( +—= % ) x L(H—S% X), y =L¢%Y, (9.2)

then the veloc1ty field again acquires a multi-deck structure. The order relation & = £¥° (where, as before,
g = Re™®) corresponds to the type of interaction with a transonic outer flow which was analysed for
the first time in [19] and is characterized by a triple-deck pattern of the perturbed motion. Compared
with the case when the Mach riumber differs from unity by a finite amount, the special feature of the
theory in [19] is the fact that the interaction condition in it becomes dynamic (time dependent).

The increase in the amplitude of the pulsations, namely, the inequalities

eh <5 <1 (9.3)

which are satisfied leads to the appearance of a quadruple-deck asymptotic structure, since the lower
subdomain of the non-linear motion separates into an inviscid part and a viscous sublayer close to the
wall, immediately adjacent to the surface. A boundary layer with a self-induced pressure in a transonic
flow has been considered in [20] for the case when there are perturbations of comparatively large
amplitude of the form of (9.1)—(9.3) in it. It was shown in [20] that the system of equations

% 9 9.4
arox ot Tt 0 04
AA+G) HA+G) __op
+(A+GC 4 9.5
T TArOT =y, ®-2)
a9(1, x,0) _ _ a9(t, x,0) _ _ dA(t, x)
ax - p(tv x)v ayu - ax (96)

holds in a special dimensionless system of units in the case of locally inviscid perturbations.

The potential (¢, x, y,)} of the outer ve1001ty ﬁeld obeys Eq. (9.4) in which the transonic parameter
K., = O(1) characterizes the quantity (M —1)87". The limit as y, — 0 corresponds to a transition from
the potential part of the flow in the main deck of the boundary layer and relations (9.6) are the conditions
for matching with (9.1) on its outer edge as Y, — .

If the dependence of all the stream function on time and the spatial coordinate is defined by the self-
similar variable x — ct, then, from (9.4), we have

32
ayZ

Consequently, op/on, + idp/dx, where n, = (¢ - Kw)l/ %, isan analytic function of the complex variable
x + in,. The Schwarz integral for the upper half plane, as it applies to this analytic function, can be
written in the form

(c- K) “’ 9.7)

%0 _ 1 i 9¢(t, x, 0)/ dy, &
o mMe-K)f - &

(9.8)

On substituting boundary conditions (9. 6) into (9.8), we obtain an interaction condition which differs
from (3.10) solely in the coefficient (c — K,,)"? on the right-hand side. In particular, the periodic solution
of system of equations (9.4)-(9.6) is found by making the substitution

xox(c-K A t-HC-K)B, k- kic-K)H

in formula (7.10). Hence, all of the soliton-type solutions mentioned in Sections 4-7 (as well as those
discussed in [21-23]) also hold in the case of the equations which describe the free interaction of a
boundary layer with an outer transonic flow.
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